What are word embeddings?
Word embeddings are a type of representation for text data, which allows words with similar meaning to have a similar representation in a neural network model. Word embeddings are trained such that words that are used in similar contexts will have similar vectors in the embedding space. This is useful because it allows the model to generalize better and makes it easier to learn from smaller amounts of data. Word embeddings can be trained using a variety of techniques, such as word2vec and GloVe, and are commonly used as input to deep learning models for natural language processing tasks.
So are they represented as arrays of numbers?
Yes, word embeddings are typically represented as arrays of numbers. The length of the array will depend on the size of the embedding space, which is a parameter that is chosen when the word embeddings are created. For example, if the size of the embedding space is 50, each word will be represented as a vector of length 50, with each element of the vector representing a dimension in the embedding space.
In a neural network model, these word embedding vectors are typically fed into the input layer of the model, and the rest of the layers in the model are then trained to perform some task, such as language translation or sentiment analysis. The model learns to combine the various dimensions of the word embedding vectors in order to make predictions or decisions based on the input data.
How are word embeddings determined?
There are a few different techniques for determining word embeddings, but the most common method is to use a neural network to learn the embeddings from a large dataset of text. The basic idea is to train a neural network to predict a word given the words that come before and after it in a sentence, using the output of the network as the embedding for the input word. The network is trained on a large dataset of text, and the weights of the network are used to determine the embeddings for each word.
There are a few different variations on this basic approach, such as using a different objective function or incorporating additional information into the input to the network. The specific details of how word embeddings are determined will depend on the specific method being used.
What are the specific methods for generating word embeddings?
Word embeddings are a type of representation for natural language processing tasks in which words are represented as numerical vectors in a high-dimensional space. There are several algorithms for generating word embeddings, including:
- Word2Vec: This algorithm uses a neural network to learn the vector representations of words. It can be trained using two different techniques: continuous bag-of-words (CBOW) and skip-gram.
- GloVe (Global Vectors): This algorithm learns word embeddings by factorizing a matrix of word co-occurrence statistics.
- FastText: This is an extension of Word2Vec that learns word embeddings for subwords (character n-grams) in addition to full words. This allows the model to better handle rare and out-of-vocabulary words.
- ELMo (Embeddings from Language Models): This algorithm generates word embeddings by training a deep bi-directional language model on a large dataset. The word embeddings are then derived from the hidden state of the language model.
- BERT (Bidirectional Encoder Representations from Transformers): This algorithm is a transformer-based language model that generates contextual word embeddings. It has achieved state-of-the-art results on a wide range of natural language processing tasks.
What is the word2vec CBOW model?
The continuous bag-of-words (CBOW) model is one of the two main techniques used to train the Word2Vec algorithm. It predicts a target word based on the context words, which are the words surrounding the target word in a text.
The CBOW model takes a window of context words as input and predicts the target word in the center of the window. The input to the model is a one-hot vector representation of the context words, and the output is a probability distribution over the words in the vocabulary. The model is trained to maximize the probability of predicting the correct target word given the context words.
During training, the model adjusts the weights of the input-to-output connections in order to minimize the prediction error. Once training is complete, the model can be used to generate word embeddings for the words in the vocabulary. These word embeddings capture the semantic relationships between words and can be used for various natural language processing tasks.
What is the word2vec skip-gram model?
The skip-gram model is the other main technique used to train the Word2Vec algorithm. It is the inverse of the continuous bag-of-words (CBOW) model, which predicts a target word based on the context words. In the skip-gram model, the target word is used to predict the context words.
Like the CBOW model, the skip-gram model takes a window of context words as input and predicts the target word in the center of the window. The input to the model is a one-hot vector representation of the target word, and the output is a probability distribution over the words in the vocabulary. The model is trained to maximize the probability of predicting the correct context words given the target word.
During training, the model adjusts the weights of the input-to-output connections in order to minimize the prediction error. Once training is complete, the model can be used to generate word embeddings for the words in the vocabulary. These word embeddings capture the semantic relationships between words and can be used for various natural language processing tasks.
What are the steps for the GloVe algorithm?
GloVe learns word embeddings by factorizing a matrix of word co-occurrence statistics, which can be calculated from a large corpus of text.
The main steps of the GloVe algorithm are as follows:
- Calculate the word co-occurrence matrix: Given a large corpus of text, the first step is to calculate the co-occurrence matrix, which is a symmetric matrix X where each element X_ij represents the number of times word i appears in the context of word j. The context of a word can be defined as a window of words around the word, or it can be the entire document.
- Initialize the word vectors: The next step is to initialize the word vectors, which are the columns of the matrix W. The word vectors are initialized with random values.
- Calculate the pointwise mutual information (PMI) matrix: The PMI matrix is calculated as follows:
PMI_ij = log(X_ij / (X_i * X_j))
where X_i is the sum of all the elements in the ith row of the co-occurrence matrix, and X_j is the sum of all the elements in the jth column of the co-occurrence matrix. The PMI matrix is a measure of the association between words and reflects the strength of the relationship between them.
- Factorize the PMI matrix: The PMI matrix is then factorized using singular value decomposition (SVD) or another matrix factorization technique to obtain the word vectors. The word vectors are the columns of the matrix W.
- Normalize the word vectors: Finally, the word vectors are normalized to have unit length.
Once the GloVe algorithm has been trained, the word vectors can be used to represent words in a high-dimensional space. The word vectors capture the semantic relationships between words and can be used for various natural language processing tasks.
How is the matrix factorization performed in GloVe? What is the goal?
The goal of matrix factorization in GloVe is to find two matrices, called the word matrix and the context matrix, such that the dot product of these matrices approximates the co-occurrence matrix. The word matrix contains the word vectors for each word in the vocabulary, and the context matrix contains the context vectors for each word in the vocabulary.
To find these matrices, GloVe minimizes the difference between the dot product of the word and context matrices and the co-occurrence matrix using a least-squares optimization method. This results in word vectors that capture the relationships between words in the corpus.
In GloVe, the objective function that is minimized during matrix factorization is the least-squares error between the dot product of the word and context matrices and the co-occurrence matrix. More specifically, the objective function is given by:



How is the objective function minimized?

In each iteration of SGD, a mini-batch of co-occurrence pairs (i, j) is selected from the co-occurrence matrix, and the gradients of the objective function with respect to the parameters are computed for each pair. The parameters are then updated using these gradients and a learning rate, which determines the step size of the updates.
This process is repeated until the objective function has converged to a minimum or a preset number of iterations has been reached. The process of selecting mini-batches and updating the parameters is often referred to as an epoch. SGD is an efficient method for minimizing the objective function in GloVe because it does not require computing the Hessian matrix, which is the matrix of second-order partial derivatives of the objective function.
When should GloVe be used instead of Word2Vec?
GloVe (Global Vectors) and Word2Vec are two widely used methods for learning word vectors from a large corpus of text. Both methods learn vector representations of words that capture the semantics of the words and the relationships between them, and they can be used in various natural language processing tasks, such as language modeling, information retrieval, and machine translation.
GloVe and Word2Vec differ in the way they learn word vectors. GloVe learns word vectors by factorizing a co-occurrence matrix, which is a matrix that contains information about how often words co-occur in a given corpus. Word2Vec, on the other hand, learns word vectors using a shallow neural network with a single hidden layer.
One advantage of GloVe is that it is computationally efficient, as it does not require training a neural network. This makes it well suited for use with large corpora. However, Word2Vec has been shown to perform better on some tasks, such as syntactic analogies and named entity recognition.
How is the co-occurrence matrix reduced to lower dimensions in GloVe?
In GloVe (Global Vectors), the co-occurrence matrix is not directly reduced to lower dimensions. Instead, the co-occurrence matrix is used to learn word vectors, which are then reduced to lower dimensions using dimensionality reduction techniques, such as principal component analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE).
To learn word vectors from the co-occurrence matrix in GloVe, the matrix is factorized into two matrices, called the word matrix and the context matrix, using a least-squares optimization method. The word matrix contains the word vectors for each word in the vocabulary, and the context matrix contains the context vectors for each word in the vocabulary.
After the word vectors have been learned, they can be reduced to lower dimensions using dimensionality reduction techniques. For example, PCA can be used to project the word vectors onto a lower-dimensional space, while t-SNE can be used to embed the word vectors in a two-dimensional space for visualization.
It is worth noting that reducing the dimensionality of the word vectors may result in some loss of information, as some of the relationships between words may be lost in the lower-dimensional space. Therefore, it is important to consider the trade-off between the dimensionality of the word vectors and their representational power.
Interpreting GloVe from the Ratio of Co-occurrence Probabilities
GloVe uses the ratio of co-occurrence probabilities to learn the word vectors and context vectors. Specifically, it minimizes the difference between the dot product of the word and context vectors and the log of the ratio of co-occurrence probabilities. This allows GloVe to learn word vectors that capture the meanings and relationships between words in the language.